

Acceptance testing of state-of-the-art CT scanners using a new national protocol: first experience on a large number of scanners of different make and model

the working group 'Radiology'
of the Belgian Hospital Physicists Association
Hilde Bosmans, Klaus Bacher, <u>Kim Lemmens</u>, Françoise Malchair,
Tom Meylaers, Frederic Bleeser, Nico Buls & Tom Clarijs



# QC by the MPE in Belgium

- Annual test by MPE on all CT scanners
- Same minimal protocol for all MPEs,
  - From RP91 EC document -> new text
  - Annual patient dosimetry surveys

- The phantom available with the MPEs is used
  - MPEs are engaged by the hospitals or work for independent companies



## Overview

- X-ray tube
  - Tube voltage (beam quality)
  - Tube output
  - Reproducibility
- Image quality
  - Low contrast detail
  - High contrast detail
  - Hounsfield units
- Geometry
  - Radiation field
  - Irradiated slice thickness
  - Light field marker
  - Table movement

- Dose indications (all)
  - CTDI 16cm and 32cm
  - Tube voltage
  - Collimation
  - Tube modulation
- Tube load modulation
  - Z-axis and X-Y
- Patient protocols
- Performance of SNR<sup>2</sup> / dose
  - Over time
  - Compared to other systems



| Siemens | 19 | 70,37% |
|---------|----|--------|
| GE      | 2  | 7,41%  |
| Toshiba | 2  | 7,41%  |
| Philips | 4  | 14,81% |

| Radiology    | 17 | 62,96% |
|--------------|----|--------|
| Radiotherapy | 4  | 14,81% |
| PET-CT       | 2  | 7,41%  |
| SPECT-CT     | 3  | 11,11% |

Data made available by the team in :

## Material

|         |                |           |         | numb. of |             |
|---------|----------------|-----------|---------|----------|-------------|
| Vendor  | Name           |           |         | arrays   | Tubes       |
| GE      | VCT light spee | d         |         | 64       |             |
| GE      | Bright speed   |           |         | 16       |             |
| Philips | MX 8008 IDT    |           |         | 16       |             |
| Philips | Brilliance Big | ooor      |         | 16       |             |
| Philips | Brilliance     |           |         | 64       |             |
| Philips | Brilliance Big | ooor      |         | 16       |             |
| Siemens | Somatom Emo    | otion     |         | 16       |             |
| Siemens | Somatom Emo    | otion     |         | 6        |             |
| Siemens | Somatom Def    | inition   |         | 64       | dual source |
| Siemens | Somatom Emo    | otion     |         | 4        |             |
| Siemens | Symbia T6 (SP  | ECT-CT)   |         | 6        |             |
| Siemens | Somatom Emo    | otion     |         | 6        |             |
| Siemens | Somatom Emo    | otion     |         | 6        |             |
| Siemens | Somatom Def    | inition F | lash    | 64       | dual source |
| Siemens | Somatom        |           |         | 64       |             |
| Siemens | Somatom Sen    | sation    |         | 16       |             |
| Siemens | Biograph 16 (F | ET-CT)    |         | 16       |             |
| Siemens | Biograph 40 (F | ET-CT)    |         | 40       |             |
| Siemens | Symbia (SPEC   | T-CT)     |         | 16       |             |
| Siemens | Somatom Def    | inition A | \S+     | 128      |             |
| Siemens | Somatom Def    | inition   |         | 64       | dual source |
| Siemens | Symbia Truep   | oint (SPE | ECT-CT) | 2        |             |
| Siemens | Somatom Sen    | sation    |         | 64       |             |
| Siemens | Somatom spir   | it        |         |          |             |
| Siemens | Emotion duo    |           |         | 2        |             |
| Toshiba | Aquillion 64   |           |         | 64       |             |
| Toshiba | Aquillion ONE  |           |         | 64       |             |



# Tube voltage & output

## Motivation:

- Safety for the personnel
- Is the tube OK?
- (scatter radiation)

### Side remarks:

- Expensive measurement equipment
- Scan in scout mode or service mode



Example (GE VCT Bright Speed 64)

| Tube voltage accuracy<br>set mA: 10 |             |               |  |  |  |  |  |  |
|-------------------------------------|-------------|---------------|--|--|--|--|--|--|
| set kV                              | measured kV | Deviation (%) |  |  |  |  |  |  |
| 120                                 | 123,67      | 3,06%         |  |  |  |  |  |  |
| 140                                 | 146,14      | 4,39%         |  |  |  |  |  |  |
| 100                                 | 101,93      | 1,93%         |  |  |  |  |  |  |
| 80                                  | 80,05       | 0,07%         |  |  |  |  |  |  |
|                                     | Maximum:    | 4,39%         |  |  |  |  |  |  |
|                                     | limit:      | 10,00%        |  |  |  |  |  |  |





- Deviation in tube voltage in 5/27 systems
  - Is it a problem of the measurement device?
- Other parameters: Fine on all systems



# Image quality

#### **Motivation:**

 Can the scanner achieve minimal quality limits?

#### Side remarks:

- Ex: use of Catphan
- Define reproducible reference exposure conditions:
  - CTDI<sub>vol</sub> about 10mGy
  - 2 kernels
  - Sequential scanning



Example (Siemens Somatom Definition)

|          |        |      | : soft kernel<br>: 120 |                    | -                 |
|----------|--------|------|------------------------|--------------------|-------------------|
|          |        | ни   | SD                     | Uniformity<br>(HU) | Uniformity<br>(%) |
| ROI cen  | tral 1 | 4,47 | 6,32                   |                    |                   |
| ROI to   | p 1    | 5,31 | 6,31                   | 0,84               | 0,08%             |
| ROI rig  | ht 1   | 5,68 | 5,24                   | 1,21               | 0,12%             |
| ROI bott | tom 1  | 5,02 | 5,70                   | 0,55               | 0,05%             |
| ROHe     | ft 1:  | 5,40 | 6,22                   | 0,93               | 0,09%             |
| Me       | ean: 1 | 5,35 | 5,87                   | 1,21               | 0,12%             |

| with diff. HU = 10 | and 10mm dia                                                              | meter visible?                                                    |
|--------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------|
| soft kernel        | yes                                                                       |                                                                   |
| sharp kernel       | yes                                                                       |                                                                   |
| soft kernel        | yes                                                                       |                                                                   |
| sharp kernel       | yes                                                                       |                                                                   |
| soft kernel        | yes                                                                       |                                                                   |
| sharp kernel       | yes                                                                       |                                                                   |
|                    | soft kernel<br>sharp kernel<br>soft kernel<br>sharp kernel<br>soft kernel | sharp kernel yes soft kernel yes sharp kernel yes soft kernel yes |

- Uniformity: always fine;
- Artefacts: should it be tested for all positions on the table?
- Low contrast test of cathphan: always fine; subjective
- High contrast (line pairs or MTF): method and interpretation?



# Accuracy of HU

#### Motivation:

- Brain:
  - 55 70 HU: bleeding or thrombus; >75HU: no bleeding
  - Intracranial extracerebral fluid > 15HU : includes blood rests
- Abdomen
  - Liver steatoses < 30HU; hemochromatosis > 70HU
- Urography
  - Cysts 0 20 HU; cysts incl. proteins 60 80 HU
- Musculo-skeletal:
  - Diff between fluid (0-20HU)and blood (30 35HU)



Verification of HU in water:

|                 |       |      | fails in |
|-----------------|-------|------|----------|
| CT number water | 120kV | 10HU | 3/27     |
|                 |       |      | fails in |
|                 | 140kV | 10HU | 12/27    |
|                 |       |      | fails in |
|                 | 80kV  | 10HU | 16/27    |

- HU of water can be adjusted
- Does it become even more important in dual energy CT?



# Geometry

#### **Motivation:**

- Scan at the right position
- Irradiate the right amount of tissue
- Moving parts move correctly

#### Side remarks:

- For radiotherapy purposes more stringent tests required
- Accurate positioning also required for Catphan



- Irradiated slice width: fails in 5/27;
- Reconstructed slice thickness: fine
- Table motion: fine
- Gantry tilting angle: fine



# (indicated) CTDI<sub>vol</sub>

#### **Motivation:**

- If well indicated,
   it can be used
   directly for:
  - Optimization
  - Automated patient dose surveys

### Side remarks:

- Time consuming



## Indicated

- CTDI<sub>vol</sub> for all tube voltages
- CTDI<sub>vol</sub> for phantoms of 16cm and 32cm diam.

Measurements in the center of the phantom only

- for all collimations
- for reproducibility
- tube load
- with tube modulation on
- small focus, special filters, sliding window, . ...



 Deviation between measured and indicated CTDI<sub>vol</sub> for 12 scanners

|        | 120kV    |         |           |        |        | 120kV     |         |           |
|--------|----------|---------|-----------|--------|--------|-----------|---------|-----------|
|        | (110kV), | >120kV, | << 120kV, |        | Finest | (110 kV), | >140kV, | << 120kV, |
| Reprod | 32cm     | 32cm    | 32cm      | TCM    | coll   | 16cm      | 16cm    | 16cm      |
| 4,27   | 11,27    | 10,09   | 17,77     | 17,86  | 8,21   | 4,56      | 7,37    | 17,56     |
| 1,06   | 15,2     | 14,96   | 18,8      | 12,93  | 15,5   | 1,57      | 4,16    | 7,27      |
| 2,75   | 14,11    | 2,77    | 2,9       | 11,87  | 20,37  | 14,3      | 1,92    | 5,89      |
| 0,81   | 11,81    | 2,94    | 38,66     | -7,45  | -18,3  | -3,82     | 6,48    | -36,2     |
| 0,06   | -4,95    | -4,31   | -11,62    | 9,92   |        | 9,68      | 14,62   | 4,11      |
| 0,52   | 0,73     | 8,08    | 6,64      | 3,14   | 10,11  | 8,86      | 13,4    | 7,61      |
| 0,34   | 1,01     | -0,26   | 19,46     | 6,15   | -1,5   | 11,79     |         | 22,96     |
| 0,53   | 11,29    | 11,07   | 3,6       | 3,7    | 0,41   | 9,93      | 10,82   | 2         |
| 2,21   | -4,36    | 12,86   | 10,98     | -1,49  | 5,37   |           |         |           |
| 0,09   | 6,25     | 6,16    | 5,19      | -23,82 | 5,6    | -10,78    | -10,51  | -8,92     |
| 0,32   | -5,63    | -6,08   | -3,07     | 3,19   | -7,7   | -17,9     | -21,87  | -35,1     |
| 0,67   | 9,91     | 14,55   | 17,88     | 17,38  | 4,12   | 4,82      | 7,79    | -1,44     |



## **Tube** modulation

#### **Motivation:**

- Substantial effect on patient dose
- Have to understand or give advice on settings

#### Side remarks:

 New methodology has to be developed

# Z-axis modulation





Example: Care Dose 4D(Somatom Definition)





# X-Y modulation







Example: smart mA (GE system)





# Siemens Symbia Truepoint

Care Dose 4D







# Philips Brilliance Big Bore

#### z-DOM + ACS

#### X-Y modulatie Opstelling: scan van platgelegd CTDI 32cm fantoom, pencil beam op 0' en op 90' Patient name: QCTEST\_MODULATIE2 14000 12000 10000 8000 pencil beam op 0° 6000 pecil beam op 90° 4000 2000 0 2000 3000 1000 4000

#### Z modulatie:

Opstelling: 32cm CTDI fantoom + 16cm CTDI fantoom

Patient name: QCTEST\_MODULATIE





# Example: Toshiba Aquillion 64







# Patient protocols

#### **Motivation:**

 Exposure settings determine patient dose & quality

#### Side remarks:

- Settings are the responsibility of the radiologists, but I propose we guide them
- Are preprogrammed settings representative for a typical patient?



# Patient protocols

- Example: we verify...
  - Is TCM used?
  - Are pitch and reconstruction kernel reasonable?
  - CTDIvol?

|                          |                       |     |         | ь.          |                 |                                            |               | -                 |                                   |  |
|--------------------------|-----------------------|-----|---------|-------------|-----------------|--------------------------------------------|---------------|-------------------|-----------------------------------|--|
|                          |                       |     | Sca     | n Parameter | S               | Recons                                     | Reconstructie |                   | Fantoom Dosis                     |  |
| CT volwassenen           | Protocol naam         | kV  | mΑ      | Pitch       | collimatie (mm) | gereconstrue<br>erde<br>snededikte<br>(mm) | Kernel        | mAs<br>modulatie? | Aangeduide<br>CTDI <sub>vol</sub> |  |
| CT schedel               | 1.1 Schedel zonder    | 140 | 100-600 | 0,531       | 20              | 0,625                                      | std,          | NI 6              | 99,55                             |  |
| CT van de sinussen       | 2.1 Sinussen          | 120 | 60      | 0,516       | 40              | 1,25                                       | detail, bone, | NEE               | 4,26                              |  |
| Standaard CT thorax      | 5.1 Thorax Standaard  | 120 | 150-600 | 1,375       | 40              | 0,625                                      | std, lung     | NI 25             | 20,5                              |  |
| Hoge resolutie CT longen |                       |     |         |             |                 |                                            |               |                   |                                   |  |
| CT lumbale wervelzuil    | 7.1Lumbale wervelzuil | 120 | 250-650 | 0,516       | 40              | 1,25                                       | bone,std,de   | NI 15             | 68,59                             |  |
| CT abdomen               | 6.1 Abdomen           | 120 | 200-600 | 1,375       | 40              | 1,25                                       | std,          | NI 25             | 24                                |  |



# Survey of CT protocols











# Example. Trigger for urgent patient dose survey!











# Performance: over time; compared to similar systems

#### **Motivation:**

- Foreseen in many int. protocols, a 'standard test'
- Let's go beyond 'exposure' and include 'quality', with SNR<sup>2</sup> as a function of CTDI<sub>vol</sub>

#### Side remarks:

- Fixed exposure conditions are required
- Which FOM would be optimal?



# Example







## Discussion

- X-ray tube
  - Tube voltage (beam quality)
  - Linearity of tube output
  - Reproducibility
- Image quality
  - Low contrast detail
  - High contrast detail
  - Hounsfield units
- Geometry
  - Radiation field
  - Irradiated slice thickness
  - Light field marker
  - Table movement

- Dose indications
  - CTDI 16cm and 32cm
  - Tube voltage
  - Collimation
  - Tube modulation
- Tube load modulation
  - Z-axis and X-Y
- Patient protocols
- Performance, SNR<sup>2</sup> / dose



## Discussion

- Results of present protocol = more work than before (follow – up!)
- Several 'problems' detected

- New techniques increase the need for (automated) (personalized) patient dosimetry
- The MPE can be active in ImageGently ImageWisely



## **Future directives**

- 1. Find an absolute image quality index and/or phantom for optimization work
- 2. Automate QC of CT scanners



## Conclusion

Making exciting new CT features happen in practice is an exciting challenge and will be a challenge for many more years